Multichannel Electrophysiological Spike Sorting via Joint Dictionary Learning&Mixture Modeling
نویسندگان
چکیده
We propose a methodology for joint feature learning and clustering of multichannel extracellular electrophysiological data, across multiple recording periods for action potential detection and classification (“spike sorting”). Our methodology improves over the previous state of the art principally in four ways. First, via sharing information across channels, we can better distinguish between single-unit spikes and artifacts. Second, our proposed “focused mixture model” (FMM) deals with units appearing, disappearing, or reappearing over multiple recording days, an important consideration for any chronic experiment. Third, by jointly learning features and clusters, we improve performance over previous attempts that proceeded via a two-stage learning process. Fourth, by directly modeling spike rate, we improve detection of sparsely firing neurons. Moreover, our Bayesian methodology seamlessly handles missing data. We present state-of-the-art performance without requiring manually tuning hyperparameters, considering both a public dataset with partial ground truth and a new experimental dataset.
منابع مشابه
A Brief Look into Spike Sorting Methods
Spike sorting is a class of techniques used in the analysis of electrophysiological data. Studying the dynamics of neural activity via electrical recording relies on the ability to detect and sort neural spikes recorded from a number of neurons by the same electrode. This article reviews methods for detecting and classifying action potentials, a problem commonly referred to as spike sorting.
متن کاملOn the Analysis of Multi-Channel Neural Spike Data
Nonparametric Bayesian methods are developed for analysis of multi-channel spike-train data, with the feature learning and spike sorting performed jointly. The feature learning and sorting are performed simultaneously across all channels. Dictionary learning is implemented via the beta-Bernoulli process, with spike sorting performed via the dynamic hierarchical Dirichlet process (dHDP), with th...
متن کاملYASS: Yet Another Spike Sorter
Spike sorting is a critical first step in extracting neural signals from large-scale electrophysiological data. This manuscript describes an efficient, reliable pipeline for spike sorting on dense multi-electrode arrays (MEAs), where neural signals appear across many electrodes and spike sorting currently represents a major computational bottleneck. We present several new techniques that make d...
متن کاملAutomatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysis.
Automatic spike sorting is a prerequisite for neuroscience research on multichannel extracellular recordings of neuronal activity. A novel spike sorting framework, combining efficient feature extraction and an unsupervised clustering method, is described here. Wavelet transform (WT) is adopted to extract features from each detected spike, and the Kolmogorov-Smirnov test (KS test) is utilized to...
متن کاملSpike Sorting Using Time-Varying Dirichlet Process Mixture Models
Spike sorting is the task of grouping action potentials observed in extracellular electrophysiological recordings by source neuron. In this thesis a new incremental spike sorting model is proposed that accounts for action potential waveform drift over time, automatically eliminates refractory period violations, and can handle “appearance” and “disappearance” of neurons during the course of the ...
متن کامل